Textual Entailment Features for Machine Translation Evaluation
نویسندگان
چکیده
We present two regression models for the prediction of pairwise preference judgments among MT hypotheses. Both models are based on feature sets that are motivated by textual entailment and incorporate lexical similarity as well as local syntactic features and specific semantic phenomena. One model predicts absolute scores; the other one direct pairwise judgments. We find that both models are competitive with regression models built over the scores of established MT evaluation metrics. Further data analysis clarifies the complementary behavior of the
منابع مشابه
Robust Machine Translation Evaluation with Entailment Features
Existing evaluation metrics for machine translation lack crucial robustness: their correlations with human quality judgments vary considerably across languages and genres. We believe that the main reason is their inability to properly capture meaning: A good translation candidate means the same thing as the reference translation, regardless of formulation. We propose a metric that evaluates MT ...
متن کاملMachine Translation Evaluation with Textual Entailment Features
We present two regression models for the prediction of pairwise preference judgments among MT hypotheses. Both models are based on feature sets that are motivated by textual entailment and incorporate lexical similarity as well as local syntactic features and specific semantic phenomena. One model predicts absolute scores; the other one direct pairwise judgments. We find that both models are co...
متن کاملUoW: NLP techniques developed at the University of Wolverhampton for Semantic Similarity and Textual Entailment
This paper presents the system submitted by University of Wolverhampton for SemEval-2014 task 1. We proposed a machine learning approach which is based on features extracted using Typed Dependencies, Paraphrasing, Machine Translation evaluation metrics, Quality Estimation metrics and Corpus Pattern Analysis. Our system performed satisfactorily and obtained 0.711 Pearson correlation for the sema...
متن کاملSemantic Textual Similarity for MT evaluation
This paper describes the system used for our participation in the WMT12 Machine Translation evaluation shared task. We also present a new approach to Machine Translation evaluation based on the recently defined task Semantic Textual Similarity. This problem is addressed using a textual entailment engine entirely based on WordNet semantic features. We described results for the Spanish-English, C...
متن کاملHDU: Cross-lingual Textual Entailment with SMT Features
We describe the Heidelberg University system for the Cross-lingual Textual Entailment task at SemEval-2012. The system relies on features extracted with statistical machine translation methods and tools, combining monolingual and cross-lingual word alignments as well as standard textual entailment distance and bag-of-words features in a statistical learning framework. We learn separate binary c...
متن کامل